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ABSTRACT 

This numerical study of natural convection flow in a horizontal cylindrical annulus is aimed at establishing 
the utility of the Galerkin-spline formulation for natural convection problems. The annulus has isothermal 
walls and the fluid is of constant material properties except for its density; density variation is incorporated 
via the Boussinesq approximation. Two formulations are employed, the velocity formulation and the 
streamfunction formulation. We are able to demonstrate the usefulness of the Galerkin-spline formulation 
for the problem and in comparison with published data, show that it leads to greater accuracy than the 
finite difference method. We also show the streamfunction formulation to be superior computationally to 
the velocity formulation. We find no bifurcation from the basic state up to 60,000 in Grashof number, 
even without a priori assumption of symmetry about the vertical plane. This last finding is in sharp contrast 
to results obtained when porous material fills the annulus. 
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N O M E N C L A T U R E 

At(r) normalized B-splines in the radial direction, 
bj(θ) normalized periodic B-splines in the tangential direction, 
Bj(θ) normalized B-splines in the tangential direction, 
Ci coefficients in the expansion for cosine function, 
DG Jacobian of the system of equations, 
g acceleration due to gravity, 
Gr Grashof number based on the gap width, 
k order of the B-splines, 
N number of B-splines, 
Nu Nusselt number, 
p pressure, 
Pr Prandtl number of the fluid, 
r radial coordinate, dimensionless radial distance, 
r1,r2 radii of inner and outer cylinders, respectively, 
Ra Rayleigh number based on the gap width = GrPr, 
Si coefficients in the expansion for sine function, 
T temperature, dimensionless temperature [=(T— T2)/(T1 — T2)], 
T1, T2 temperature of the inner and outer cylinders, respectively, 
tij unknown coefficients in the expansion for T, 
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u dimensional, dimensionless radial velocity component, 
uij unknown coefficients in the expansion for u, 
v dimensional, dimensionless tangential velocity component, 
vij unknown coefficients in the expansion for v, 
x solution vector, 
X dimensionless radial coordinate. 

Greek 
α thermal diffusivity of the fluid, 
β coefficient of volumetric expansion of the fluid, 
δ ratio of inner radius to gap width of the annulus, 
ε relative error in global energy conservation, 
η vector of state variables for the problem, 
λ vector of parameters for the problem, 
v kinematic viscosity of the fluid, 
θ tangential coordinate and the same divided by 27π, 
σ step size in the parameter, 
Ψ dimensionless stream function, 
Ψij unknown coefficients in the expansion for Ψ, 
ω dimensional vorticity, 
Ω dimensionless vorticity. 

Subscripts 
1 value at the inner cylinder, 
2 value at the outer cylinder, 
m mean value, 
max maximum value, 
r refers to radial direction, 
θ refers to tangential direction. 

Superscripts 
k iteration counter, 
T transpose of the matrix. 

INTRODUCTION 
Natural convection in enclosures is an important method of energy transfer which, for this 
reason, has received considerable attention in recent years. Applications of such flows include 
thermal storage systems, transmission cables, nuclear reactor design, cooling of electronic 
equipment, aircraft cabin insulation, etc. While an enclosure may be of any shape, the most 
studied one is the horizontal annulus of constant geometry. A review of earlier studies is available 
in Kuehn and Goldstein1. Various boundary conditions, including isothermal walls as well as 
fixed heat flux conditions on the walls have been studied2-7. Moreover, concentric and eccentric 
annuli with different diameter ratios have been investigated 8,9. Effect of variable fluid properties 
on the heat transfer characteristics has also been researched by several authors10,11. To date, 
however, there are only a few solutions for free convective flow in a horizontal annulus without 
assuming flow symmetry about the vertical diameter. 

We investigate this flow, with no a priori assumption of symmetry. Our conclusions are 
negative, however, in this respect: we find that the flow remains symmetric with respect to the 
vertical plane through the axis of the annulus for all the conditions tested. Although in thin 
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annuli at either top or bottom locally the conditions superficially correspond to those of the 
Bernard problem, we find no bifurcation from the basic state. This finding is in stark contrast 
to the results of Himasekhar and Bau12, who calculated flow in annuli containing saturated 
porous media, and found bifurcation. 

The numerical strategy employed in this paper is projection of the governing equations onto 
a polynomial subspace with a B-spline basis. The resulting non-linear algebraic system is solved 
with parametric continuation in the Grashof number, using QR decomposition and Newton's 
method. We compare results from two formulations. Although the streamfunction formulation 
converges faster than the formulation based on the primitive variables, both formulations yield 
results superior in accuracy to those from the finite difference method. We show this by 
comparison with published finite difference data1. 

ANALYSIS 
We consider here two horizontal co-axial cylinders of infinite lengths and of radii r1 and r2, 
r2 > r1, and write the relevant equations, employing the Boussinesq approximation for density 
variation, in cylindrical polar coordinates. The problem is modelled by four coupled partial 
differential equations: two momentum equations, in the r and the θ direction, respectively, the 
equation of mass conservation and the equation of energy. The two momentum equations contain 
derivatives of the pressure. 

The real difficulty in the calculation of the velocity field lies in the unknown pressure field. 
The pressure field is only indirectly specified via the continuity equation; when the correct 
pressure field is substituted into the momentum equations, the resulting velocity field satisfies 
the continuity equation. Furthermore the only condition that may be specified on the pressure 
in an incompressible fluid is that p=0 at some point on the boundary. This indirect specification 
is not very useful for our purpose. To deal with this problem we eliminate the pressure by 
cross-differentiation between the equations of momentum. This manipulation yields the following 
mathematical model for natural convective flow in a cylindrical annulus: 

where 8 is measured anti-clockwise from the east position. The Grashof number, Gr, and the 
Prandtl number, Pr, have the definition: 
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Also we have used the non-dimensionalization 

but dropped the overscore bar for convenience. Note that we make no assumption of symmetry. 
We employ two representations in the calculations: (i) the velocity formulation, (l)-(3), and 

(ii) the streamfunction formulation, obtained by substituting into (1) and (3) for velocity 
components in terms of the streamfunction. 

Velocity formulation 
The equations pertinent here are (1), (2) and (3). The velocity boundary conditions are no 

slip at the walls. Since we are dealing with incompressible fluids, we may also set the condition 
that p=constant, say, at the point (r,0)=(O,O). When eliminating the pressure, we increased the 
order of the momentum equations. To assure smooth solution, we evaluate the equation of 
continuity at the walls r=0, 1 and obtain the regularity condition of zero normal derivative of 
axial velocity at the walls13. The boundary conditions, therefore, are: 

We intend to approximate {u(r, θ), v(r, θ), T(r, θ)}, which is given only implicitly as solution 
of (1), (2), (3) and (5), by piecewise polynomial functions. Thus we partition the interval [0, 1] as: 

and let t: {tj}N+k be the non-decreasing knot sequence such that: 

Construct a sequence A1,..., AN of B-splmes of order k for the knot sequence t by the recurrence 
relation14 

According to the Curry-Schoenberg theorem14, the sequence {Aj} forms a basis for the kth 
order piecewise polynomial space with breakpoint sequence π and k—2 continuous derivatives 
at internal breakpoints. In symbols we can write 
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The B-splines thus defined provide a partition of unity: 

In the present calculations we employ various values of k, the order of splines in the basis. 
Let {Ai{r): 1 ≤ i ≤ Nr} be the set of normalized B-splines relative to kr, πr and let {Bj(θ): 1 ≤ j ≤ Nθ} 
be the set of normalized B-splines relative to kθ, πθ. 

To assure that the solution is periodic in θ, we require that: 

The simplest way to assure satisfaction of (8) is by re-definition of the spline basis. Let 
and define the matrices Φ and Σ and the vector b: 

It can be verified that the sequence {bi(θ), 1≤ i≤ Nθ — 3} is a basis for the subspace of Pkπ 
defined as: 

Denote the usual B-spline basis in r by A, the periodic B-spline basis in θ by b, then the basis 
for approximating {u(r,θ), v(r,θ), T(r,θ)} is AÄb and the expansions: 

satisfy the boundary condition (5) as well as the periodicity conditions (8) of the problem. 
With the expansions in (10), the continuity, momentum and energy equations (1), (2) and (3) 

discretize to: 
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Here Cj and Sj are the coefficients in the expansions for cos and sin functions, respectively, as 
follows 

The Galerkin coefficients are defined in the Appendix. 

Streamfunction formulation 
We can easily eliminate the equation of continuity (2) from further consideration if the 

dimensionless streamfunction Ψ(r,θ) is used to represent the velocity field: 

In terms of Ψ the kinematic boundary conditions are: 

where we postulate zero net circulation. 
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The streamfunction Ψ(r, θ) and the temperature T(r, θ) are assumed to have the representation: 

These expansions satisfy both boundary and periodicity conditions. 
With definition (15) and expansion (17) substituted into (1) and (3), application of Galerkin's 

procedure leads to the following two sets of equations: 

Continuation of the solution 
The discretized equations, (11)—(13) or (18), (19) can be written in the form: 

where G: Rn=HÄΛ→Rm is a C1-mapping (l>2), dim H=m and dim Λ = n—m>1. Here ηεH 
is a vector of state variables, {uij, vij, tij} or {Ψij, tij}, and λ ε Λ is a vector of parameters Gr, Pr, δ. 

In the computational scheme we fix two of the parameters, say Pr and δ, and vary the Grashof 
number Gr; thus n—m = l and the regular manifold of (20) is a path. 

Local iteration. We use the Gauss-Newton method for local iteration15. Denoting (η,λ) by x 
for convenience, the iteration sequence is defined by: 

where DG(xk) is the Jacobian of G evaluated at xk . 
Equation (21) is computationally inconvenient. It can be verified, however, that xk+l will 

satisfy (21) if it satisfies the condition: 
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Numerically (22) can be implemented in various ways. With QR factorization of DG(xk)T, 

where QεRnx n is orthogonal and R ε Rm x m is upper triangular. This implies that 

is a solution of (22). 
The Gauss-Newton method can now be represented by the algorithm: 
(i) set x°=x; 
(ii) for k=0,1 , . . . until convergence 

(a) solve the triangular system RTy=G(xk) for y ε Rn; 

Continuation along the path. For a solution point x on the path, again, we consider the QR 
factorization DG(x)T 

Clearly the last column vector of the orthogonal matrix Q, namely Qen, is the tangent vector 
of the path. Here en = (0,. . . , 0, l)Tε Rn at x. 

The simplest way to get a predictor x° for the next point on the path is to set 

where σ is a suitable step size. 
When the λ-component of the tangent Qen equals zero, the tangent vector is orthogonal to 

A. This is a necessary condition for a turning point. A bifurcation point x* on the path, on the 
other hand, is characterized by rank (DG(x*))<n. There are also conditions on the second 
derivative. For technical details the reader is referred to Joseph16 and Keller17. 

RESULTS AND DISCUSSION 
We have employed the Galerkin-spline formulation in the past for recirculating flows18-20, for 
swirling flows of non-Newtonian fluids21,22, for linear stability calculations23 and for path 

Table 1 Relative error in global energy conservation (Pr=0.7, r2/r1 =2.6, kr,=kθ,=5) 

Nr = Nθ 

11 
15 
19 
23 
27 
31 

FD method1 

1000 

0.00091 
0.00011 
0.00003 
0.00001 
0.00000 
0.00000 

0.0028 

Ra 

10,000 

0.00716 
0.00456 
0.00134 
0.00034 
0.00008 
0.00001 

0.0025 

50,000 

0.0464 
0.0064 
0.0045 
0.0059 
0.0045 
0.0031 

0.0170 
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continuation and bifurcation analysis24, always with good results. Here we investigate the utility 
of the Galerkin-spline formulation for natural convection problems, and its accuracy relative 
to the finite difference method in such problems. This constitutes our first objective for the 
present paper. The second objective is a comparison, from a computational point of view, 
between two formulations: (1) the velocity formulation and (2) the streamfunction formulation. 

We will examine the suitability of the Galerkin-spline formulation for our natural convection 
problem and its accuracy via the streamfunction formulation. The accuracy of the formulation 
depends on two parameters, the number of splines, Nr, Nθ, in expansion (17) and the order kr, 
kθ, of the splines in the expansion. For simplicity we set Nr=Nθ = N and kr=kθ=k in the sequel. 
Satisfaction of global energy balance can be estimated by comparing average values of the 
Nusselt number Nu1 and Nu2, calculated on the inner and outer cylinders, respectively. We 
define a relative error ε for global energy conservation by: 

For the conditions Pr=0.7 and r2/r1=2.6 we obtained ε values as shown in Table 1. The 
entries of this table were calculated with k=5 and various number of terms in the expansion 
(17). This Table also contains values obtained from the finite difference result of Kuehn and 
Goldstein1. We use the Rayleigh number, Ra=PrGr, in this comparison. Convergence in ε is 
monotonic for small values of the Rayleigh number. 

The effect of varying Nr, Nθ is shown in Table 2 in another way by displaying the mean 
Nusselt number (Nu)m=(Nu1 + Nu2)/2. Convergence, which is monotonic, seems to be 
considerably faster when kr=kθ is increased from 4 to 5. 

The effect of varying the order of splines kr, kθ is demonstrated in Table 3. Even at Ra=50,000 
changing kr=kθ from 5 to 6 changes (Nu)m only by 1 in 3000, showing rapid convergence with 
order of splines. 

In Table 4 we compare the two formulations, calculating (Nu)m from the low order system 
Nr=Nθ=11 and k r=k θ=4. The 'error' displayed here was calculated relative to the solution 
obtained with Nr=Nθ=20 and kr=kθ=5 using the streamfunction formulation. The latter 
solutions can be shown to have converged to better than 1 in 1000. The streamfunction 

Table 2 Mean Nusselt number (Pr=0.7, r2/r1 =2.6, 
Ra = 50,000) 

Kr = Kθ 

4 
5 

11 

2.9461 

Nr=Nθ 

15 

3.0277 
3.0540 

19 

3.0954 

23 

3.0834 
3.1025 

Table 3 M e a n Nussel t n u m b e r ( P r = 0 . 7 , r2/r1 = 2.6, 
Nr=Nθ = 23) 

Ra 

30,000 
50,000 

4 

2.7422 
3.0834 

kr —Kθ 

5 

2.7504 
3.1025 

6 

2.7491 
3.1034 

Table 4 Mean Nusselt number (Pr=0.7, r2/r1 = 2.6, Nr=Nθ = 11, kr=kθ=4) 

Formulation 

Velocity 
(error) 
Streamfunction 
(error) 

3000 

1.3915 
(0.072) 
1.4120 
(0.092) 

Gr 

6000 

1.6890 
(0.074) 
1.7045 
(0.090) 

10,000 

2.5145 
(0.640) 
1.9525 
(0.078) 
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formulation can be seen to be significantly better than the velocity formulation at high Grashof 
numbers, considering the 'error' in Table 4 and the fact that Nr=Nθ=11 yields a system of 128 
equations in the streamfunction formulation but a system of 200 equations in the velocity 
formulation. 

Table 5 contains a comparison of local and average Nusselt numbers from our stream function 
formulation with kr=kθ=5 at Pr=0.7 and r2/r1=2.6, with data from finite difference 
calculations1 at three Rayleigh numbers. These results show significant differences between the 
two sets of data, up to 18% at Ra=50,000. 

Having established the accuracy of the present method, we present some results in Figures 
1-3. Figure I shows the temperature profiles at Ra = 50,000, Fr=0.7, and r2/r1=2.6 for various 
angular locations measured clockwise from the north position. These profiles match very well 
with those in Figure 15 of Kuehn and Goldstein1, and are presented for many more angular 
locations than those in Kuehn and Goldstein1. The temperature profiles clearly show the radial 
temperature inversion indicating the separation of inner- and outer-cylinder thermal boundary 
layers. Thus the fluid near the cool outer cylinder is warmer than that closer to the hot inner 

Table 5 Comparison of local and average Nusselt numbers (Pr=0.7, r2/r1 = 2.6, k=5) 

Ra Location 

1,000 inner 

Kuehn & Goldstein1 

outer 

Kuehn & Goldstein1 

10,000 inner 

Kuehn & Goldstein1 

outer 

Kuehn & Goldstein1 

50,000 inner 

Kuehn & Goldstein1 

outer 

Kuehn & Goldstein1 

N 

11 
15 
19 
23 

11 
15 
19 
23 

11 
15 
19 
23 

11 
15 
19 
23 

11 
15 
19 
23 

11 
15 
19 
23 

0° 

0.606 
0.606 
0.606 
0.606 
0.57 
1.847 
1.846 
1.846 
1.846 
1.78 

0.401 
0.409 
0.415 
0.417 
0.37 
5.325 
5.527 
5.485 
5.458 
5.35 

0.717 
0.619 
0.642 
0.646 
0.53 
8.316 

10.216 
10.933 
11.094 
10.77 

30° 

0.713 
0.713 
0.713 
0.713 
0.67 
1.707 
1.707 
1.707 
1.707 
1.64 

0.961 
0.968 
0.967 
0.966 
0.90 
4.198 
4.201 
4.196 
4.194 
4.10 

1.816 
1.880 
1.880 
1.879 
1.68 
5.490 
5.572 
5.623 
5.623 
5.57 

60° 

0.947 
0.947 
0.947 
0.947 
0.90 
1.384 
1.384 
1.384 
1.384 
1.33 

1.729 
1.746 
1.745 
1.744 
1.64 
2.803 
2.798 
2.798 
2.798 
2.72 

2.708 
2.744 
2.754 
2.756 
2.58 
3.468 
3.496 
3.514 
3.516 
3.45 

Nusselt number 

90° 

1.191 
1.191 
1.192 
1.192 
1.14 
1.043 
1.043 
1.043 
1.043 
1.00 

2.388 
2.420 
2.423 
2.423 
2.33 
1.624 
1.621 
1.622 
1.622 
1.54 

3.356 
3.383 
3.410 
3.416 
3.28 
2.451 
2.464 
2.474 
2.474 
2.28 

120° 

1.379 
1.381 
1.381 
1.381 
1.32 
0.789 
0.789 
0.789 
0.789 
0.75 

2.721 
2.747 
2.752 
2.753 
2.70 
0.729 
0.730 
0.730 
0.730 
0.68 

3.915 
4.056 
4.095 
4.104 
3.97 
1.361 
1.340 
1.345 
1.345 
1.10 

150° 

1.492 
1.494 
1.494 
1.494 
1.44 
0.647 
0.647 
0.647 
0.647 
0.61 

2.823 
2.858 
2.864 
2.865 
2.85 
0.279 
0.281 
0.281 
0.281 
0.26 

4.082 
3.982 
4.022 
4.033 
4.15 
0.291 
0.288 
0.288 
0.289 
0.26 

180° 

1.529 
1.531 
1.532 
1.532 
1.47 
0.602 
0.602 
0.602 
0.602 
0.57 

2.886 
2.904 
2.909 
2.911 
2.90 
0.160 
0.165 
0.165 
0.165 
0.14 

3.611 
3.931 
4.011 
4.016 
4.32 
0.154 
0.135 
0.141 
0.141 
0.12 

Avg. 

1.132 
1.132 
1.132 
1.133 
1.081 
1.133 
1.133 
1.133 
1.133 
1.084 

2.046 
2.067 
2.070 
2.071 
2.010 
2.061 
2.076 
2.073 
2.071 
2.005 

3.014 
3.064 
3.089 
3.093 
3.024 
2.878 
3.044 
3.102 
3.112 
2.973 
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cylinder. This phenomenon has also been observed in natural convection between concentric 
spheres25 and in a vertical slot26. Heat is convected from the lower portion of the inner cylinder 
to the top of the outer cylinder. 

As shown in Figure 2, vorticity in the central core is almost constant near this Rayleigh 
number, indicating a region approaching solid-body rotation, and similar to flow in a vertical 
slot27. The dimensionless vorticity, Ω, plotted in Figures 2 and 3, is defined as: 

where ω is the dimensional vorticity. We may note that with Ψ known in terms of an expansion 
in B-splines, it is relatively easy to find Ω from (26). Figures 2 and 3 show the Ω values normalized 
by |Ω|max at various angular locations measured clockwise from the north position. At much 
lower Rayleigh numbers, vorticity is well distributed within the annulus, as shown in Figure 3 
for Ra= 1000, Pr=0.7 and r2/r1=2.6 at the same angular locations as in Figure 2. At much 
higher Rayleigh numbers, vorticity approaches zero in most of the central portion of the annulus. 
This implies a stationary core region, and is similar to the natural convection flow in a vertical 
slot28. Results for streamlines and isotherms are available in the literature (e.g. Kuehn and 
Goldstein1), and are therefore not presented here. 

On reading a recent paper of Himasekhar and Bau12, who calculate natural convection in 
horizontal annuli containing saturated porous media, it occurred to us that we might, in our 
present problem, encounter bifurcation from the basic flow. We reasoned that for thin annuli 
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at either top or bottom locally the conditions correspond to those of the Benard problem and 
we investigated the existence of bifurcating solutions. Our conclusions are negative, however, 
as we found no bifurcation from the basic state up to 60,000 in the Grashof number. This finding 
is in stark contrast to the results obtained in saturated porous media. 

In conclusion we may state that the Galerkin-spline formulation is a suitable strategy for 
cavity flow in natural convection problems, especially when streamfunction formulation is used. 
We find the accuracy of the Galerkin-spline formulation to be superior to the finite difference 
method for comparable size systems. 

APPENDIX 
Integration over the unit square R yields the Galerkin coefficients 
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where a ≤ b ≤ c, a=a+ b+ c+2 (if a > 0)+1 (if b > 0), K ≥ 0, L > 0, and superscripts a, b, and c 
imply the nth, bth and cth derivative of the spline. 
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